Vea también: Biquaternion, Parámetros de Cayley-Klein, Número Complejo, Álgebra de la División, Parámetros de Euler, Cuatro Vectores, Número Entero Hamiltoniano, Número Hipercomplejo, Octonión, Conjugado del Cuaternion, Grupo del Cuaternion, Norma del Cuaternion
Altmann, S. L. Rotations,Quaternions, and Double Groups. Oxford, Inglaterra: Clarendon Press, 1986.
Arfken, G. MathematicalMethods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
Arvo, J. GraphicsGems II. Nueva York: Academic Press, pp. 351-354 y 377-380, 1994.
Baker, A. L. Quaternionsas the Result of Algebraic Operations. New York: Van Nostrand, 1911.
Conway, J. H. y Guy, R. K. TheBook of Numbers. New York:Springer-Verlag, pp. 230-234, 1996.
Conway, J. and Smith, D. OnQuaternions and Octonions. Wellesley, MA: A K Peters, 2001.
Crowe, M. J. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. New York: Dover, 1994.
Dickson, L. E. Algebrasand Their Arithmetics. New York: Dover, 1960.
Downs, L. «CS184: Using Quaternions to Represent Rotation». https://www-inst.eecs.berkeley.edu/~cs184/sp08/lectures/05-3DTRansformations.pdf.
Du Val, P. Homographies,Quaternions, and Rotations. Oxford, Inglaterra: Oxford University Press, 1964.
Ebbinghaus, H. D.; Hirzebruch, F.; Hermes, H.; Prestel, A; Koecher, M.; Mainzer, M.; y Remmert, R. Numbers. New York:Springer-Verlag, 1990.
Goldstein, H. ClassicalMechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 151, 1980.
Hamilton, W. R. Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method. Dublín: Hodges and Smith, 1853.
Hamilton, W. R. Elementsof Quaternions. London: Longmans, Green, 1866.
Hamilton, W. R. The Mathematical Papers of Sir William Rowan Hamilton. Cambridge, England: Cambridge University Press, 1967.
Hardy, A. S. Elementsof Quaternions. Boston, MA: Ginn, Heath, & Co., 1881.
Hardy, G. H. y Wright, E. M. «Quaternions». §20.6 en An Introduction to the Theory of Numbers, 5ª ed. Oxford, Inglaterra: Clarendon Press, pp. 303-306, 1979.
Hearn, D. y Baker, M. P. Computer Graphics: C Version, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 419-420 y 617-618, 1996.
Holdaway, L. «Quaternion Traversal». 2006. https://www.bluestarfolly.com/art/quaternion.html.
Meyer, D. «Three-Dimensional Fractals (Quaternionic Fractals)». Nov. 10,2002. https://www.physcip.uni-stuttgart.de/phy11733/index_e.html.
Joly, C. J. AManual of Quaternions. London: Macmillan, 1905.
Julstrom, B. A. «Using Real Quaternions to Represent Rotations in Three Dimensions». Módulos UMAP en Matemáticas de Pregrado y sus Aplicaciones, Módulo 652. Lexington, MA: COMAP, Inc., 1992.
Kelland, P. y Tait, P. G. Introductionto Quaternions, 3rd ed. London: Macmillan, 1904.
Kuipers, J. B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 1998.
Mishchenko, A. y Solovyov, Y. «Quaternions». Quantum 11,4-7 y 18, 2000.
Nicholson, W. K. Introductionto Abstract Algebra, 2nd ed. New York: Wiley, 1999.
Salamin, G. Item 107 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 46-47, feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/quaternions.html#item107.
Sandin, D.; Dang, Y.; Kauffman, L.; y DeFanti, T. «A Diamond of QuaternionicJulia Sets». https://www.evl.uic.edu/hypercomplex/html/diamond.html.
Shoemake, K. «Animating Rotation with Quaternion Curves». Computer Graphics 19,245-254, 1985.
Smith, H. J. «Quaternions for the Masses». https://www.geocities.com/hjsmithh/Quatdoc/Qindex.html.
Tait, P. G. An Elementary Treatise on Quaternions, 3rd ed., enl. Cambridge, England: Cambridge University Press, 1890.
Tait, P. G. «Quaternions». Encyclopædia Britannica, 9ª ed. 1886. Reimpreso en Tait, P. §CXXIX en Scientific Papers, Vol. 2. pp. 445-456. https://www.ldc.usb.ve/~vtheok/cursos/ci5322/quaternion/quaternions.pdf.
Weisstein, E. W. «Books about Quaternions». https://www.ericweisstein.com/encyclopedias/books/Quaternions.html.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1168, 2002.